Skip to content
Snippets Groups Projects
  1. Feb 14, 2024
    • François Clément's avatar
    • François Clément's avatar
      logic_compl: · 746abf60
      François Clément authored
      Add prop_ext/proof_irrel, aliases for propositional_extensionality/proof_irrelevance.
      
      Function_compl:
      Rename bij_ex_uniq -> bij_ex_uniq_equiv.
      
      Function_sub:
      Add doc.
      Move stuff around.
      Modify def bijS.
      Rename bijS_alt -> bijS_spec,
             bijS_ex -> bijS_ex_uniq_equiv (modified).
      Rm double funS_comp.
      Add and prove inj_S_equiv.
      
      ord_compl, Finite_family, MonoidComp, AffineSpace, Sub_struct, Finite_dim,
        multi_index, poly_Lagrange, FE, FE_simplex, FE_LagP:
      Propagate new API (from logic_compl, Function_compl, Function_sub).
      
      ord_compl:
      Make some arguments implicit.
      
      {Monoid,Group,Ring,ModuleSpace}_compl, AffineSpace:
      Add and prove inhabited_fct_{m,g,r,ms,as}.
      746abf60
  2. Feb 12, 2024
    • François Clément's avatar
      Tune doc. · 4378acbf
      François Clément authored
      4378acbf
    • François Clément's avatar
      Function_compl: · 61fbd5b2
      François Clément authored
      Choose form for surjectivity and use the same with range (f x1 = x2).
      Some internal renaming.
      
      Function_sub:
      Actually, bijS_ex needs "non-unique" choice.
      Unify form of surjectivity (f x1 = x2).
      Some internal renaming.
      Split bijS_comp_reg in to bijS_comp_{injS,surjS}.
      
      Finite_family, Monoid_compl, Sub_struct:
      Propagate new API (from Function_compl).
      Some internal renaming.
      61fbd5b2
  3. Feb 09, 2024
    • François Clément's avatar
      Code review in Compl. · 395b3ce5
      François Clément authored
      Tune required library files.
      Add some documentation.
      Move stuff around, factor arguments and compact/simplify some proofs.
      Some style unification.
      
      logic_compl:
      Rename not_eq_sym_invol -> neq_sym_invol.
      Add and prove iff_not_l_equiv,
                    ex_EX (an alias for constructive_indefinite_description).
      
      Subset_compl:
      Use Lebesgue.Subset_dec and logic_compl instead of ClassicalEpsilon.
      
      Function_compl:
      Rename inj_comp_l -> comp_inj_l.
      Add and prove fun_ext_contra{,_rev,_equiv}, surj_id, f_inv_id_{rev,equiv}.
      
      Function_sub: WIP.
      
      Sub_struct:
      Propagate new API (from Subset_compl).
      395b3ce5
    • François Clément's avatar
      Miss that one... · 38b6f92d
      François Clément authored
      38b6f92d
    • François Clément's avatar
      Add banner. · 09512e04
      François Clément authored
      09512e04
    • François Clément's avatar
      1a9e1a39
    • François Clément's avatar
      ord_compl: · 70814fb6
      François Clément authored
      Move stuff around.
      Move extF_liftF_S, Rg_0_liftF_S, incrF_Rg_le_0, fun_ext_incrF_Rg from Finite_family.
      Rename narrow_S_inj -> narrow_S_injS,
             lower_S_inj -> lower_S_injS.
      Add def nondecrF.
      Add and prove bump_{eq,neq,incr},
                    sortedF_monot, incrF_nondecrF,
                    narrow_S_inj, lower_S_inj,
                    {widen,lift}_S_incrF, {narrow,lower}_S_incr{F,S}.
      Generalize filterP_cast_ord_incrF to any m (instead of 'I_n1).
      Alternate proof of filterP_ord_ind_l_in_n0 not using lower-level stuff from MC.
      
      Finite_family:
      Move extF_liftF_S, Rg_0_liftF_S, incrF_Rg_le_0, fun_ext_incrF_Rg to ord_compl.
      70814fb6
  4. Feb 08, 2024
  5. Feb 07, 2024
  6. Feb 06, 2024
  7. Feb 05, 2024
    • François Clément's avatar
      Move stuff around. · 1a2cb404
      François Clément authored
      Add and prove ord_max_equiv_ge{q,}, ord_nmax_equiv_lt{n,},
                    cast_ord_max_equiv_ge{q,}, cast_ord_nmax_equiv_lt{n,},
                    lenPF_ind_r_in_S_alt.
      Higher-level proof of filterP_ord_ind_r_in_max.
      WIP: filterP_ord_ind_r_in_max_rev.
      1a2cb404
    • François Clément's avatar
    • François Clément's avatar
      That patch was not necessary... · 097b0997
      François Clément authored
      097b0997
    • François Clément's avatar
      Function_sub: · 42b52bf2
      François Clément authored
      Add and prove Rg_comp_alt.
      
      ord_compl:
      Move stuff around.
      Make some arguments explicit, others implicit.
      Add and prove ord0_equiv_le, ord_n0_equiv_gt,
                    incrF_{0,max},
                    cast_ord0_equiv_le{q,}, cast_ord_n0_equiv_gt{n,},
                    incrF_cast_ord_{0,max},
                    filterP_ord_incl_Rg, filterP_ord_Rg_eq.
      Simplify proofs of filterP_ord_ind_l_in_0{,_rev}.
      Btw, filterP_rev_ord seems OK!
      
      Finite_family:
      Propagate new API (from ord_compl).
      42b52bf2
    • François Clément's avatar
      Remove wrong statement! · 68ae96eb
      François Clément authored
      68ae96eb
    • François Clément's avatar
      nat_compl: · 58d807bb
      François Clément authored
      Compact some proofs.
      Add todo about naming.
      
      ord_compl:
      More stable version of insert_concat_r_ord_0.
      
      Finite_family:
      Propagate new API (from ord_compl).
      58d807bb
    • François Clément's avatar
      Function_sub: · 4f10e259
      François Clément authored
      Add and prove RgS_comp.
      4f10e259
    • François Clément's avatar
      Function_sub: · 3348f6cf
      François Clément authored
      Rename injS_inj -> inj_S_equiv,
             surjS_surj -> surj_S_equiv,
             bijS_bij -> bij_S_equiv.
      
      Sub_struct, Finite_dim:
      Propagate new API (from Function_sub).
      3348f6cf
  8. Feb 03, 2024
  9. Feb 02, 2024
  10. Feb 01, 2024
    • François Clément's avatar
      Finite_family: · 27bef716
      François Clément authored
      Add and prove skipF_2{l,r}0, skipF_3{l,m,r}{0,1},
                    skipF_coupleF_{l,r}, skipF_tripleF_{l,m,r}.
      
      multi_index:
      Propagate new API (from Finite_family).
      27bef716
    • François Clément's avatar
      nat_compl: · f8979c5c
      François Clément authored
      Some cleaning.
      Move stuff around.
      Add and prove nat_le_total, nat_lt_total_strict, le_neq_lt, nat_ltS.
      
      ord_compl:
      Simplify/compact some proofs.
      Move stuff around.
      Move is_orderedF stuff from Monoid_compl.
      Rename is_orderedF* -> sortedF*,
             is_orderedF_S_aux -> sortedF_S_sortedF_aux,
             is_orderedF_S -> sortedF_S_sortedF.
      Add def sortedF_S.
      Modify sortedF_inj, sortedF_S_sortedF_aux, sortedF_S_sortedF.
      Add and prove sortedF_sortedF_S, sortedF_equiv.
      Add defs ord_le, ord_lt, ord_ltn.
      Add and prove ord_le_{refl,antisym,trans,total},
                    ord_lt_{irrefl,asym,trans,total_strict}.
      Modify defs incrF{,_S}.
      Proof of incrF_equiv.
      Simplify proof of incrF_inj.
      
      Finite_family:
      Add defs PAF, PEF, notF, andF, orF, impF, equivF.
      Add and prove PF_dec{,_l,_r}.
      Simplify proofs of brF_dec{,_l,_r}.
      Rename equivF -> equivFA.
      Move is_orderedF_castF from Monoid_compl.
      Rename is_orderedF_castF -> sortedF_castF,
             skipF_coupleF_{0,1} -> skipF_2{l,r},
             skipF_tripleF_{0,1,2} -> skipF_3{l,m,r}.
      Add and prove PAF_ind_{l,r,skipF,skip2F,replaceF,replace2F},
                    sortedF_castF_rev, sortedF_castF_equiv.
      Rename incrF_Rg_eq_eq_aux -> incrF_Rg_le_0,
             incrF_Rg_eq_eq -> ext_fun_incrF_Rg.
      Simplify proofs of Rg_0_liftF_S, incrF_Rg_le_0, ext_fun_incrF_Rg.
      
      Monoid_compl, multi_index:
      Propagate new API (from ord_compl, Finite_family).
      
      Monoid_compl:
      Move is_orderedF stuff to ord_compl and Finite_family.
      Simplify proof of concatnF_order.
      
      multi_index:
      Move stuff around.
      Rename MO{2,n}_aux{1,2} -> MO{2,n}_correct{1,2}.
      Fix MO2_correct{1,2}, MOn_correct2 (commented).
      Rename MOn_neq -> MOn_irrefl (modified),
             MOn_total_order -> MOn_total_strict (modified).
      f8979c5c
  11. Jan 31, 2024
  12. Jan 30, 2024
Loading