Skip to content
Snippets Groups Projects
index.html 5.88 KiB
Newer Older
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8" />
    <meta name="description" content="An Online IDE for the Coq Theorem Prover" />
    <link rel="stylesheet" type="text/css" href="node_modules/bootstrap/dist/css/bootstrap.min.css">
    <style>kbd { background: #0003; color: #333; }</style>
    <title>Use Coq in Your Browser: The Js Coq Theorem Prover Online IDE!</title>
<body>
  <div id="ide-wrapper" class="toggled">
  <div id="code-wrapper">
  <div id="document">
  <div>
    <h3>Welcome to the JsCoq Interactive Online System!</h3>
      Welcome to the JsCoq technology demo! JsCoq is an interactive,
      web-based environment for the Coq Theorem prover, developed at
      the <a href="https://www.cri.ensmp.fr/">Centre de Recherche en Informatique</a> of <a href="http://www.mines-paristech.fr/">MINES ParisTech</a> (former École de Mines de Paris).
    </p>
    <h4>Instructions:</h4>
      JsCoq is open source. If you find any problem or want to make
      any contribution, you are extremely welcome! We await your
      feedback at <a href="https://github.com/ejgallego/jscoq">github</a>.
    </p>
    <h5>Saving your own proof scripts:</h5>
      The <a href="examples/scratchpad.html">scratchpad</a> offers simple, local
      storage functionality.
      Please go to <a href="https://x80.org/collacoq/">CollaCoq</a> if
      you want to share your developments with other users.

    <h5>Key bindings:</h5>
      <kbd>Alt</kbd>+<kbd>Enter</kbd> or <kbd>Alt</kbd>+<kbd></kbd> goes to
      the current point; 
      <kbd>Alt</kbd>+<kbd>N</kbd>/<kbd>P</kbd> or <kbd>Alt</kbd>+<kbd></kbd>/<kbd></kbd>
      will move through the proof; <strong>F8</strong> or the power icon toggles
      the goal panel.
    </p>
    <h4>A First Example: The Infinitude of Primes</h4>
      We don't provide a Coq tutorial (yet), but as a showcase, we
      display a proof of the infinitude of primes in Coq.  The proof relies
      in the Mathematical Components library by the
      <a href="http://ssr.msr-inria.inria.fr/">MSR/Inria</a> team led
      by Georges Gonthier, so our first step will be to load it and
      set a few Coq options:
    </p>
  </div>
  <div>
    <textarea id="addnC" >
From Coq Require Import Init.Prelude Unicode.Utf8.
From Coq Require Import ssreflect ssrfun ssrbool.
From mathcomp Require Import eqtype ssrnat div prime.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive. </textarea>
  </div>
  <div>
    <h4>Ready to do Proofs!</h4>
      Once the basic environment has been set up, we can proceed to
      the proof:
    </p>
  </div> <!-- panel-heading -->
  <div>
    <textarea id="prime_above1" >
(* A nice proof of the infinitude of primes, by Georges Gonthier *)
Lemma prime_above m : {p | m < p & prime p}.
Proof. </textarea>
    <p>
      The lemma states that given a number m, there is a primer number
      larger than m.

      Coq is a <em>constructive system</em>, which among other things
      implies that to show the existence of an object, we need to
      actually provide an algorithm that will construct it.

      In this case, we need to find a prime number `p` greater than
      `m`. What would be a suitable `p`?

      Choosing as `p` the first prime divisor of `m! + 1` works.  As
      we will shortly see, properties of divisibility will imply that
      `p` is greater than `m`.
      </p>
      <textarea id="prime_above2" >
have /pdivP[p pr_p p_dv_m1]: 1 < m`! + 1 by rewrite addn1 ltnS fact_gt0.</textarea>
      <p>
        Our first step is thus to use the library-provided lemma
        `pdivP`, which states that every number is divided by a
        prime. Thus, we obtain a number `p` and the corresponding
        hypotheses `pr_p : prime p` and `p_dv_m1` "p divides m! +
        1". The ssreflect tactic `have` provides a convenient way to
        instantiate this lemma and discard the side proof obligation
        `1 &lt; m! + 1`.
      </p>
    <textarea id="prime_above3" >
exists p => //; rewrite ltnNge; apply: contraL p_dv_m1 => p_le_m.</textarea>
    <p>
      It remains to prove that `p` is greater than `m`. We reason by
      contraposition with the divisibility hypothesis, which gives us
      the goal "if `p &lt;= m` then `p` is not a prime divisor of `m! +
    </p>
    <textarea id="prime_above4" >
by rewrite dvdn_addr ?dvdn_fact ?prime_gt0 // gtnNdvd ?prime_gt1.
    <p>
      The goal follows from basic properties of divisibility, plus
      from the fact that if `p &lt; m`, then `p` divides `m!`, but `p`
      prime cannot divide 1, a necessary condition for `p` to divide
      `m! + 1`.
    jsCoq provides many other packages, including Coq's standard
    library and the mathematical components library. Feel free to
    experiment, and bear with the alpha status of this demo.
  </p>
  <p>
    JsCoq's homepage is at github <a href="https://github.com/ejgallego/jscoq">
    https://github.com/ejgallego/jscoq</a> ¡Salut!
  </p>
  </div> <!-- /#panel body -->
  </div> <!-- /#document -->
  </div> <!-- /#code-wrapper -->
  </div> <!-- /#ide-wrapper -->

  <script src="ui-js/jscoq-loader.js" type="text/javascript"></script>
  <script type="text/javascript">
    var jscoq_ids  = ['addnC', 'prime_above1', 'prime_above2', 'prime_above3', 'prime_above4' ];
    var jscoq_opts = {
        prelude:   false,
        base_path: './',
        editor: { mode: { 'company-coq': true }, keyMap: 'default' },
        init_pkgs: ['init'],
        all_pkgs:  ['init', 'coq-base', 'coq-collections', 'coq-arith', 'coq-reals', 'mathcomp', 'equations', 'elpi', 'lf', 'plf']
    };

    /* Global reference */
    loadJsCoq(jscoq_opts.base_path)
        .then( () => coq = new CoqManager(jscoq_ids, jscoq_opts) );
  </script>
</body>