Newer
Older
(**
This file is part of the Elfic library
Copyright (C) Boldo, Clément, Faissole, Martin, Mayero
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)
Subsets of the type U are represented by their belonging function,
of type U -> Prop.
Most of the properties are tautologies that can be found on Wikipedia:
https://en.wikipedia.org/wiki/List_of_set_identities_and_relations *)
From Coq Require Import Classical.
From Coq Require Import PropExtensionality FunctionalExtensionality.
Definition emptyset : U -> Prop := fun _ => False.
Definition fullset : U -> Prop := fun _ => True.
Definition singleton : U -> Prop := fun x => x = a.
Definition empty : Prop := forall x, A x -> False.
Definition full : Prop := forall x, A x.
Definition compl : U -> Prop := fun x => ~ A x.
Definition incl : Prop := forall x, A x -> B x.
Definition same : Prop := forall x, A x <-> B x.
Definition disj : Prop :=forall x, A x -> B x -> False.
(** Binary operations on subsets. *)
Definition union : U -> Prop := fun x => A x \/ B x.
Definition inter : U -> Prop := fun x => A x /\ B x.
End Base_Def1.
Section Base_Def2.
Context {U : Type}. (* Universe. *)
(** Sesquary operation on subsets. *)
Variable A : U -> Prop. (* Subset. *)
Variable a : U. (* Element. *)
Definition add : U -> Prop := union A (singleton a).
(** More binary operation on subsets. *)
Variable B : U -> Prop. (* Subset. *)
Definition diff : U -> Prop := inter A (compl B).
Variable C : U -> Prop. (* Subset. *)
Definition partition : Prop := A = union B C /\ disj B C.
End Base_Def2.
Section Base_Def3.
Context {U : Type}. (* Universe. *)
(** Binary constructor of subsets. *)
Variable a b : U. (* Elements. *)
Definition pair : U -> Prop := add (singleton a) b.
(** More binary operation on subsets. *)
Variable A B : U -> Prop. (* Subsets. *)
Definition sym_diff : U -> Prop := union (diff A B) (diff B A).
Context {U1 U2 : Type}. (* Universes. *)
Variable A1 : U1 -> Prop. (* Subset. *)
Variable A2 : U2 -> Prop. (* Subset. *)
Definition prod : U1 * U2 -> Prop :=
inter (fun x => A1 (fst x)) (fun x => A2 (snd x)).
Definition swap : forall {U : Type}, (U1 * U2 -> U) -> U2 * U1 -> U :=
fun U f x => f (snd x, fst x).
unfold partition, disj, same, incl, full, empty, (* Predicates. *)
pair,
swap, prod, sym_diff, diff, add, inter, union, compl, (* Operators. *)
singleton, fullset, emptyset. (* Constructors. *)
Ltac subset_auto :=
subset_unfold; try tauto; try easy.
Section Prop_Facts.
Context {U : Type}. (* Universe. *)
(** Extensionality of subsets. *)
Lemma subset_ext :
forall (A B : U -> Prop),
same A B -> A = B.
Proof.
intros.
apply functional_extensionality;
intros x; now apply propositional_extensionality.
Qed.

François Clément
committed
Lemma subset_ext_equiv :
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
forall (A B : U -> Prop),
A = B <-> incl A B /\ incl B A.
Proof.
intros; split.
intros H; split; now rewrite H.
intros [H1 H2]; apply subset_ext; split; [apply H1 | apply H2].
Qed.
(** Facts about emptyset and fullset. *)
Lemma empty_emptyset :
forall (A : U -> Prop),
empty A <-> A = emptyset.
Proof.
intros; split; intros H.
intros; apply subset_ext; intros x; split; try easy; intros; now apply (H x).
now rewrite H.
Qed.
Lemma full_fullset :
forall (A : U -> Prop),
full A <-> A = fullset.
Proof.
intros; split; intros H.
now apply subset_ext.
now rewrite H.
Qed.
(** Facts about singleton. *)
Lemma singleton_in :
forall a : U, singleton a a.
Proof.
subset_auto.
Qed.
Lemma singleton_out :
forall a x : U, x <> a -> compl (singleton a) x.
Proof.
subset_auto.
Qed.
(** Facts about incl. *)
(** It is an order binary relation. *)
Lemma incl_refl :
forall (A B : U -> Prop),
same A B -> incl A B.
Proof.
intros A B H x; now rewrite (H x).
Qed.
Lemma incl_antisym :
forall (A B : U -> Prop),
incl A B -> incl B A -> A = B.
Proof.

François Clément
committed
intros; now rewrite subset_ext_equiv.
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
Qed.
Lemma incl_trans :
forall (A B C : U -> Prop),
incl A B -> incl B C -> incl A C.
Proof.
intros; intros x Hx; auto.
Qed.
Lemma full_not_empty :
inhabited U <-> ~ incl (@fullset U) emptyset.
Proof.
subset_unfold; split.
intros [x]; auto.
intros H; apply exists_inhabited with (fun x => ~ (True -> False)).
now apply not_all_ex_not in H.
Qed.
Lemma incl_empty :
forall (A : U -> Prop),
incl A emptyset -> A = emptyset.
Proof.
intros A H; apply subset_ext; split; [apply H | easy].
Qed.
Lemma full_incl :
forall (A : U -> Prop),
incl fullset A -> A = fullset.
Proof.
intros A H; apply subset_ext; split; [easy | apply H].
Qed.
(** Facts about same. *)
(** It is an equivalence binary relation. *)
(* Useless?
Lemma same_refl :
forall (A : U -> Prop),
same A A.
Proof.
easy.
Qed.*)
(* This one is used! *)
Lemma same_sym :
forall (A B : U -> Prop),
same A B -> same B A.
Proof.
easy.
Qed.
Lemma same_trans :
forall (A B C : U -> Prop),
same A B -> same B C -> same A C.
Proof.
intros A B C H1 H2 x; now rewrite (H1 x).
Qed.
(** Facts about disj. *)
Lemma disj_equiv_def :
forall (A B : U -> Prop),
disj A B <-> inter A B = emptyset.
Proof.
intros; rewrite <- empty_emptyset; subset_unfold; split;
intros H x; intros; now apply (H x).
Qed.
Lemma disj_irrefl :
forall (A : U -> Prop),
disj A A <-> A = emptyset.
Proof.
intros; rewrite <- empty_emptyset; split; intros H x Hx; now apply (H x).
Qed.
Lemma disj_sym :
forall (A B : U -> Prop),
disj A B <-> disj B A.
Proof.
intros; split; intros H x Hx1 Hx2; now apply (H x).
Qed.
Lemma disj_full_l :
forall (A : U -> Prop),
disj fullset A -> A = emptyset.
Proof.
intros A H; apply empty_emptyset; intros x Hx; now apply (H x).
Qed.
Lemma disj_full_r :
forall (A : U -> Prop),
disj A fullset -> A = emptyset.
Proof.
intros A; rewrite disj_sym; apply disj_full_l.
Qed.
Lemma disj_monot_l :
forall (A B C : U -> Prop),
incl A B ->
disj B C -> disj A C.
Proof.
intros A B C H1 H2 x Hx1 Hx2; apply (H2 x); auto.
Qed.
Lemma disj_monot_r :
forall (A B C : U -> Prop),
incl A B ->
disj C B -> disj C A.
Proof.
intros A B C H1 H2 x Hx1 Hx2; apply (H2 x); auto.
Qed.
Lemma incl_disj :
forall (A B : U -> Prop),
incl A B ->
disj A B <-> A = emptyset.
Proof.
intros; split; intros H2.
apply empty_emptyset; intros x Hx; apply (H2 x); auto.
now rewrite H2.
Qed.
End Prop_Facts.
Section Compl_Facts.
(** Facts about complement. *)
Context {U : Type}. (* Universe. *)
Lemma compl_empty :
compl (@emptyset U) = fullset.
Proof.
now apply subset_ext.
Qed.
Lemma compl_full :
compl (@fullset U) = emptyset.
Proof.
apply subset_ext; subset_auto.
Qed.
Lemma compl_invol :
forall (A : U -> Prop),
compl (compl A) = A.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.

François Clément
committed
Lemma incl_compl :
forall (A B : U -> Prop),
incl A B -> incl (compl B) (compl A).
Proof.
subset_auto; intros; intuition.
Qed.

François Clément
committed
Lemma incl_compl_equiv :
forall (A B : U -> Prop),
incl (compl B) (compl A) <-> incl A B.
Proof.
intros; split.
rewrite <- (compl_invol A) at 2; rewrite <- (compl_invol B) at 2.

François Clément
committed
apply incl_compl.
apply incl_compl.

François Clément
committed
Lemma same_compl :
forall (A B : U -> Prop),
same A B -> same (compl A) (compl B).
Proof.
subset_unfold; intros; now apply not_iff_compat.
Qed.

François Clément
committed
Lemma same_compl_equiv :
forall (A B : U -> Prop),
same (compl A) (compl B) <-> same A B.
Proof.
intros; split.
rewrite <- (compl_invol A) at 2; rewrite <- (compl_invol B) at 2.

François Clément
committed
apply same_compl.
apply same_compl.
Qed.
Lemma compl_reg :
forall (A B : U -> Prop),
same (compl A) (compl B) -> A = B.
Proof.

François Clément
committed
intros; now apply subset_ext, same_compl_equiv.
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
Qed.
Lemma compl_ext :
forall (A B : U -> Prop),
compl A = compl B -> A = B.
Proof.
intros A B H; apply compl_reg; now rewrite H.
Qed.
Lemma disj_incl_compl_r :
forall (A B : U -> Prop),
disj A B <-> incl A (compl B).
Proof.
subset_auto.
Qed.
Lemma disj_incl_compl_l :
forall (A B : U -> Prop),
disj A B <-> incl B (compl A).
Proof.
intros A B; rewrite disj_sym; apply disj_incl_compl_r.
Qed.
End Compl_Facts.
Section Union_Facts.
(** Facts about union. *)
Context {U : Type}. (* Universe. *)
Lemma union_assoc :
forall (A B C : U -> Prop),
union (union A B) C = union A (union B C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_comm :
forall (A B : U -> Prop),
union A B = union B A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_idem :
forall (A : U -> Prop),
union A A = A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_empty_l :
forall (A : U -> Prop),
union emptyset A = A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_empty_r :
forall (A : U -> Prop),
union A emptyset = A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma empty_union :
forall (A B : U -> Prop),
union A B = emptyset <-> A = emptyset /\ B = emptyset.
Proof.
intros; do 3 rewrite <- empty_emptyset; split.
intros H; split; intros x Hx; apply (H x); [now left | now right].
intros [H1 H2] x [Hx | Hx]; [now apply (H1 x) | now apply (H2 x)].
Qed.
Lemma union_full_l :
forall (A : U -> Prop),
union fullset A = fullset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_full_r :
forall (A : U -> Prop),
union A fullset = fullset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma union_ub_l :
forall (A B : U -> Prop),
incl A (union A B).
Proof.
subset_auto.
Qed.
Lemma union_ub_r :
forall (A B : U -> Prop),
incl B (union A B).
Proof.
subset_auto.
Qed.
Lemma union_lub :
forall (A B C : U -> Prop),
incl A C -> incl B C ->
incl (union A B) C.
Proof.
intros; intros x [H3 | H3]; auto.
Qed.
Lemma incl_union :
forall (A B C : U -> Prop),
incl (union A B) C -> incl A C /\ incl B C.
Proof.
intros A B C H; split; intros x Hx; apply (H x); [now left | now right].
Qed.
Lemma union_left :
forall (A B : U -> Prop),
incl A B <-> union B A = B.
Proof.
intros; split.
(* *)

François Clément
committed
intros; rewrite subset_ext_equiv; split; intros x.
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
intros [Hx | Hx]; auto.
intros Hx; now left.
(* *)
intros H x Hx; rewrite <- H; now right.
Qed.
Lemma union_right :
forall (A B : U -> Prop),
incl A B <-> union A B = B.
Proof.
intros A B; rewrite union_comm; apply union_left.
Qed.
Lemma union_monot_l :
forall (A B C : U -> Prop),
incl A B -> incl (union C A) (union C B).
Proof.
intros A B C H x [Hx | Hx]; [now left | right; now apply H].
Qed.
Lemma union_monot_r :
forall (A B C : U -> Prop),
incl A B -> incl (union A C) (union B C).
Proof.
intros; rewrite (union_comm A), (union_comm B); now apply union_monot_l.
Qed.
Lemma disj_union_l :
forall (A B C : U -> Prop),
disj (union A B) C <-> disj A C /\ disj B C.
Proof.
intros; split.
intros H; split; intros x Hx1 Hx2; apply (H x); try easy; [now left | now right].
intros [H1 H2] x [Hx1 | Hx1] Hx2; [now apply (H1 x) | now apply (H2 x)].
Qed.
Lemma disj_union_r :
forall (A B C : U -> Prop),
disj A (union B C) <-> disj A B /\ disj A C.
Proof.
intros A B C; now rewrite disj_sym, disj_union_l, (disj_sym B), (disj_sym C).
Qed.
Lemma union_compl_l :
forall (A : U -> Prop),
union (compl A) A = fullset.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma union_compl_r :
forall (A : U -> Prop),
union A (compl A) = fullset.
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
End Union_Facts.
Section Inter_Facts.
(** Facts about intersection. *)
Context {U : Type}. (* Universe. *)
Lemma inter_assoc :
forall (A B C : U -> Prop),
inter (inter A B) C = inter A (inter B C).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_comm :
forall (A B : U -> Prop),
inter A B = inter B A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_idem :
forall (A : U -> Prop),
inter A A = A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_full_l :
forall (A : U -> Prop),
inter fullset A = A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_full_r :
forall (A : U -> Prop),
inter A fullset = A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma full_inter :
forall (A B : U -> Prop),
inter A B = fullset <-> A = fullset /\ B = fullset.
Proof.
intros; do 3 rewrite <- full_fullset; split.
intros H; split; intros x; now destruct (H x).
intros [H1 H2] x; split; [apply (H1 x) | apply (H2 x)].
Qed.
Lemma inter_empty_l :
forall (A : U -> Prop),
inter emptyset A = emptyset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_empty_r :
forall (A : U -> Prop),
inter A emptyset = emptyset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_lb_l :
forall (A B : U -> Prop),
incl (inter A B) A.
Proof.
subset_auto.
Qed.
Lemma inter_lb_r :
forall (A B : U -> Prop),
incl (inter A B) B.
Proof.
subset_auto.
Qed.
Lemma inter_glb :
forall (A B C : U -> Prop),
incl C A -> incl C B ->
incl C (inter A B).
Proof.
intros; intros x Hx; split; auto.
Qed.
Lemma incl_inter :
forall (A B C : U -> Prop),
incl A (inter B C) -> incl A B /\ incl A C.
Proof.
intros A B C H; split; intros x Hx; now apply (H x).
Qed.
Lemma inter_left :
forall (A B : U -> Prop),
incl A B <-> inter A B = A.
Proof.
intros; split.
(* *)

François Clément
committed
rewrite subset_ext_equiv; split; intros x.
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
intros [Hx1 Hx2]; auto.
intros Hx; split; auto.
(* *)
intros H x Hx; rewrite <- H in Hx; now destruct Hx as [_ Hx].
Qed.
Lemma inter_right :
forall (A B : U -> Prop),
incl B A <-> inter A B = B.
Proof.
intros; rewrite inter_comm; apply inter_left.
Qed.
Lemma inter_monot_l :
forall (A B C : U -> Prop),
incl A B -> incl (inter C A) (inter C B).
Proof.
intros A B C H x [Hx1 Hx2]; split; [easy | now apply H].
Qed.
Lemma inter_monot_r :
forall (A B C : U -> Prop),
incl A B -> incl (inter A C) (inter B C).
Proof.
intros; rewrite (inter_comm A), (inter_comm B); now apply inter_monot_l.
Qed.
Lemma disj_inter_l :
forall (A B C : U -> Prop),
disj A B -> disj (inter C A) (inter C B).
Proof.
intros A B C H; rewrite disj_equiv_def in H; rewrite disj_equiv_def.
rewrite <- empty_emptyset in H; rewrite <- empty_emptyset.
intros x [[_ Hx1] [_ Hx2]]; now apply (H x).
Qed.
Lemma disj_inter_r :
forall (A B C : U -> Prop),
disj A B -> disj (inter A C) (inter B C).
Proof.
intros; rewrite (inter_comm A), (inter_comm B); now apply disj_inter_l.
Qed.
Lemma inter_compl_l :
forall (A : U -> Prop),
inter (compl A) A = emptyset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_compl_r :
forall (A : U -> Prop),
inter A (compl A) = emptyset.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
End Inter_Facts.
Section Union_Inter_Facts.
(** Facts about union and intersection. *)
Context {U : Type}. (* Universe. *)
Lemma incl_inter_union :
forall (A B : U -> Prop),
incl (inter A B) (union A B).
Proof.
intros; intros x [Hx _]; now left.
Qed.
Lemma disj_inter_union :
forall (A B : U -> Prop),
disj (inter A B) (union A B) <-> disj A B.
Proof.
intros; split; intros H x.
intros Hx1 Hx2; apply (H x); [easy | now left].
intros [Hx1 Hx2] _; now apply (H x).
Qed.
(** De Morgan's laws. *)
Lemma compl_union :
forall (A B : U -> Prop),
compl (union A B) = inter (compl A) (compl B).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma compl_inter :
forall (A B : U -> Prop),
compl (inter A B) = union (compl A) (compl B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
(** Distributivity. *)
Lemma distrib_union_union_l :
forall (A B C : U -> Prop),
union A (union B C) = union (union A B) (union A C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_union_union_r :
forall (A B C : U -> Prop),
union (union A B) C = union (union A C) (union B C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_union_inter_l :
forall (A B C : U -> Prop),
union A (inter B C) = inter (union A B) (union A C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_union_inter_r :
forall (A B C : U -> Prop),
union (inter A B) C = inter (union A C) (union B C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_union_inter :
forall (A B C D : U -> Prop),
union (inter A B) (inter C D) =
inter (inter (union A C) (union B C)) (inter (union A D) (union B D)).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_inter_union_l :
forall (A B C : U -> Prop),
inter A (union B C) = union (inter A B) (inter A C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_inter_union_r :
forall (A B C : U -> Prop),
inter (union A B) C = union (inter A C) (inter B C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_inter_union :
forall (A B C D : U -> Prop),
inter (union A B) (union C D) =
union (union (inter A C) (inter B C)) (union (inter A D) (inter B D)).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_inter_inter_l :
forall (A B C : U -> Prop),
inter A (inter B C) = inter (inter A B) (inter A C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma distrib_inter_inter_r :
forall (A B C : U -> Prop),
inter (inter A B) C = inter (inter A C) (inter B C).
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split; subset_auto.
Qed.
Lemma disj_compl_l :
forall (A B : U -> Prop),
disj (compl A) B -> ~ empty B -> ~ disj A B.
Proof.
intros A B H1 H2 H3; rewrite disj_equiv_def in H1, H3.
contradict H2; apply empty_emptyset.
rewrite <- (inter_full_l B).
rewrite <- (union_compl_l A), distrib_inter_union_r, H1, H3.
now apply empty_union.
Qed.
Lemma disj_compl_r :
forall (A B : U -> Prop),
disj A (compl B) -> ~ empty A -> ~ disj A B.
Proof.
intros A B H1 H2.
rewrite disj_sym in H1; rewrite disj_sym.
now apply disj_compl_l.
Qed.
End Union_Inter_Facts.
Section Add_Facts.
(** Facts about addition of one element. *)
Context {U : Type}. (* Universe. *)
Lemma add_incl :
forall A (a : U), incl A (add A a).
Proof.
intros; apply union_ub_l.
Qed.
Lemma add_in :
forall A (a : U), add A a a.
Proof.
intros; apply union_ub_r, singleton_in.
Qed.
End Add_Facts.
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
Section Diff_Facts.
(** Facts about set difference. *)
Context {U : Type}. (* Universe. *)
Lemma diff_equiv_def_inter :
forall (A B : U -> Prop),
diff A B = inter A (compl B).
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma diff_equiv_def_union :
forall (A B : U -> Prop),
diff A B = compl (union (compl A) B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma compl_equiv_def_diff :
forall (A : U -> Prop),
compl A = diff fullset A.
Proof.
intros; apply subset_ext; subset_auto.
Qed.
Lemma inter_equiv_def_diff :
forall (A B : U -> Prop),
inter A B = diff A (diff A B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma union_equiv_def_diff :
forall (A B : U -> Prop),
union A B = compl (diff (compl A) B).
Proof.
intros; apply subset_ext; intros x; subset_auto.
Qed.
Lemma diff_lb_l :
forall (A B : U -> Prop),
incl (diff A B) A.
Proof.
intros; apply inter_lb_l.
Qed.
Lemma diff_lb_r :
forall (A B : U -> Prop),
incl (diff A B) (compl B).
Proof.
intros; apply inter_lb_r.
Qed.
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
Lemma partition_diff_l :
forall (A B : U -> Prop),
partition (union A B) (diff A B) B.
Proof.
intros; split.
apply subset_ext; intros x; subset_auto.
subset_auto.
Qed.
Lemma partition_diff_r :
forall (A B : U -> Prop),
partition (union A B) A (diff B A).
Proof.
intros; split.
apply subset_ext; intros x; subset_auto.
subset_auto.
Qed.
Lemma diff_monot_l :
forall (A B C : U -> Prop),
incl B C -> incl (diff A C) (diff A B).
Proof.
intros A B C H x [Hx1 Hx2]; split; [easy | intros Hx3; now apply Hx2, H].
Qed.
Lemma diff_monot_r :
forall (A B C : U -> Prop),
incl A B -> incl (diff A C) (diff B C).
Proof.
intros A B C H x [Hx1 Hx2]; split; [now apply H | easy].
Qed.
Lemma disj_diff :
forall (A B : U -> Prop),
disj A B <-> diff A B = A.
Proof.

François Clément
committed
intros; rewrite subset_ext_equiv; split.